BUILD-A-CALCULUS

Experimental dietary research on *in vitro* dental calculus
Presentation info

- Blue links are to slides with supporting information
 - To return to the slide you came from, click on the plant symbol in the top right corner
- Green links are external (websites and articles)
- To return to a previous section (or skip forward), use the links at the bottom of the page.
 - This will return you to the beginning of each section
- Hover over images to obtain more information (and citation)
- For those who are visually impaired, alt text has been provided for the pictures
 - please contact the first author (b.p.bartholdy@arch.leidenuniv.nl) for any other issues viewing the presentation
What?

- This project involves developing a protocol for growing in vitro dental calculus.
- The model dental calculus system will allow controlled experimentation.
- Testing fundamental aspects of research involving dental calculus and diet.
Why?

- Lots of exciting research currently being conducted on calculus
- Certain aspects of calculus knowledge is still limited
 - Processes of incorporation (Radini et al. 2016)
 - Methodological biases
 - What we know: dietary reconstructions require caution
- What is the relationship between X and Y?
 - In vivo formation to analysis
- Previous studies associating dietary intake and recovered info
 - Humans and non-human primates
 - Studies reported a high level of stochasticity in dietary information recovered at an individual level
Calculus growth factors

- **Multifactorial aetiology**
 - Age, *ethnic background, disease (medication), genetic predisposition.*

- **Oral conditions**
 - Poor *dental hygiene, pH, salivary flow*
 - *Microbiota (Streptococcus spp.)*

- **Dietary factors** promoting growth
 - *Starch (amylopectin)*
 - *Fat (unsaturated)*
 - *Protein?*
Microremains

- Dietary markers trapped in matrix
 - Proteins
 - Plant micro-remains
- Non-dietary markers
 - Plant micro-remains
 - Dust
 - Smoke
 - Charcoal
- Bacteria
 - Endogenous
 - Commensal
 - Pathogens
 - Exogenous
Analysis

- Calculus preservation
 - Taphonomy
 - Calculus and dietary markers
 - Sampling methods

- Methods for analysis
 - Ancient DNA (aDNA)
 - Protein analysis
 - Scanning Electron Microscopy (SEM)
 - Optical microscopy
 - Chromatography
 - Stable isotopes
 - etc...

Contents

![Diagram showing relationships between Bacteria, saliva, and ancient DNA with related terms like charcoal, genetics, pH, etc.](image-url)
What (again)?

- This project involves developing a protocol for growing *in vitro* dental calculus
- The model dental calculus system will allow controlled experimentation
- Testing fundamental aspects of research involving dental calculus and diet
How?

- Addition of known quantities/ratios of dietary markers to the system
 - *Potato and wheat starches*
 - *Sampling and microscopy*
How?

- *In vitro calculus growth*
 - *Multiwell biofilm model*
 - *24-well plate with lid (high throughput)*
 - *Plastic substratum*
- Inoculated with donated saliva
 - *Days 0, 3, 5*
- Artificial saliva as growth medium
- Aerobic Incubation at 36°C
- Daily ‘feedings’
 - *Sucrose: Promote bacterial growth*
 - *Dietary markers of interest*
 - ‘Encouraged’ mineralisation (from day 15)
 - *Calcium phosphate monofluorophosphate urea (CPMU)*
- *Duration: 25 days*
How?

- Multiwell plate
- Plate setup

<table>
<thead>
<tr>
<th></th>
<th>Wheat</th>
<th>Wheat</th>
<th>Wheat</th>
<th>Wheat</th>
<th>Wheat</th>
<th>Wheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potato</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aqueous starch solutions

![Image of a Multiwell plate](image1)

![Image of Aqueous starch solutions](image2)
Initial questions

- Will the protocol work?
- Is it calculus?
- Does it incorporate starches?
Does it work?

Day 2

Day 8

Day 10

Day 20

YES!
Is it **calculus**? (FTIR)

Modern reference calculus from donor

Model calculus

YES!

Well, calculus-like...
Does it incorporate starch grains?

- 0.1% (w/v) wheat solution
- 1.0% (w/v) wheat solution (YES!)
- 5.0% (w/v) wheat solution
...ish

0.5% Wheat

<20 µm

19705400

>20 µm

25721800

0.0034%

885

0.0006%

63

0.5% Potato

<20 µm

1554800

>20 µm

2028000

0.0032%

50

0.00074%

16
Amylase activity

- No [amylase](#) activity detected
 - Amlylase assay conducted on days 5, 6, 7, and 8

- This means that the starch count will NOT be influenced by hydrolysis from a-amylase

- If the research aim is to explore the effect of amylase, it can be added to the protocol
What does this mean?

- Model calculus system
 - *In vitro growth of calculus* (-like substance) allows for controlled experimentation
 - Starches were successfully incorporated into the calculus matrix
 - *The quantity of starch is important* (especially for investigator’s sanity)
 - 1.0% solution was too much to count
 - 0.1% solution was too little for reliable results
 - The current protocol uses a 0.25% solution
What does this mean (cont.)

- Implications for dietary research
 - *Despite the high count of starches in the solutions, very few were incorporated in the calculus*
 - This is consistent with starch studies on archaeological calculus
 - *Preservation may be the least of our worries...*
 - Intake of (non-)dietary markers requires repeated exposure in high quantities
 - Measuring the level of stochasticity will require repeated experiments
 - More insight on the mechanism of starch incorporation is needed to explain the low counts
 - *Does size matter?*
 - Large starch grains (>20 um) underrepresented by a factor of 10
Limitations

- Bacterial make-up still to be determined (in progress)
 - While the model calculus mimics human calculus in mineral composition, the biofilm microbiota still need to be compared to human oral microbiota
 - The lack of amylase may mean a decreased level of α-amylase-binding streptococci (ABS) species present
 - Or that the bound amylase does not retain sufficient activity

- High variability between samples from the same multiwell plate
 - Sample (deposit recovered from each peg) weights can range from 3–12 mg
 - Further protocol optimization needed
Potential for future research

- Optimization of extraction protocols
 - e.g. HCl vs. EDTA (Tromp et al. 2017)

- Methods testing
 - Strengths
 - Biases/weaknesses
 - Combining protocols

- Incorporation of dietary starches
 - *Do starch grains get trapped in the matrix or do they adhere to the calculus (via bacteria)*?
 - *Does starch representation differ between processed and native starch grains?*

- How does diet influence calculus growth?
 - *Do certain dietary components inhibit or promote calculus growth?*

- How does enzyme activity affect the recovery of other dietary markers?
Thanks for listening viewing!

- Acknowledgements
 - HARVEST project (Dr. Amanda Henry)
 www.harvestproject.eu
 - Dr. Shira Gur-Arieh
 - Dr. Stephanie Schnorr
 - Dr. Irina Velsko
 - Suzan de Groot
 - Rijksdienst voor het Cultureel Erfgoed

- Questions, comments, etc. are most welcome!
- Contact:
 b.p.bartholdy@arch.leidenuniv.nl
References

- Dawes et al. 2015
- Hidaka et al. 2008
- Lieverse 1999
- Jin and Yip 2002
- Nikitkova et al. 2013
- Warinner et al. 2014
Saliva

- Whole saliva
 - A mixture of mucous and serous secretions from the salivary glands
 - ca. 99% water
 - mucin, proteins, enzymes, minerals, electrolytes

- Important for the normal functioning of the oral cavity
 - Lubrication
 - Taste
 - Buffer (maintains pH)
 - Cleansing (removes food particles)
 - Initial digestion (enzyme activity)
 - Antimicrobial action
 - Protection against demineralisation

- Salivary flow is important for the precipitation of minerals
 - High salivary flow rates increase the mineral interaction between the saliva and biofilm
Calculus research

- Oral microbiome characterisation
 - Mann et al. 2018
- Dietary reconstruction
 - Hendy et al. 2018
- Medicinal use?
 - Buckley et al. 2014
- Nicotine use
 - Eerkens et al. 2018
Aetiology

- Differences within and between populations
 - Microbiome differences
 - Access to professional dental care
 - Oral hygiene practices

- Age
 - With increasing age, increased susceptibility to both caries and calculus

- Medication
 - Some medication promotes the formation of calculus
Oral biofilm formation

- The pellicle is initially formed by salivary proteins - Allowing subsequent bacterial adhesion
- Lack of oral hygiene will allow bacterial accumulation - Leading to larger plaque deposits
- Bacterial influence - Especially Streptococcus and Actinomyces spp. are major contributors
- Both localised and overall pH - Acidic conditions will lead to demineralisation and caries - Alkaline conditions will lead to mineralisation and calculus formation
- Mineral deposition - Salivary minerals (Mg, Na, K, Ca, Cl, HCO₃, PO₄) - Bacterial mineralisation
- Attach. Mineralise. Repeat. - calculus forms in layers with multiple mineralisation events
Dietary influence

- Factors promoting calculus growth
 - **Starch**
 - Specifically starches with high amylopectin content
 - Starches high in amylose content more likely to promote caries
 - **Fat**
 - Specifically unsaturated fats
 - **Protein(?)**
 - Increases concentration of urea, promoting a more alkaline environment, which in turn is conducive to calculus growth,
 - but it also suppresses crystal growth
 - **Para-masticatory chewing**
 - Increases salivary flow, which in turn increases the precipitation of minerals,
 - But may also dislodge already developed plaque/calculus
Oral microbiome

- Microbiome = collection of microorganisms in a certain environment/niche
- Oral bacteria
 - > 600 species (many unclassified)
 - Mixed anaerobic and aerobic
 - Mixed temperature tolerance
 - Mixed pathogenicity
 - Can cause both dental and systemic disease
Calculus composition

- **Calculus composition**
 - Collagen (organic)
 - Octacalcium phosphate, brushite (early stage mineralisation)
 - Hydroxyapatite, whitlockite (late stage mineralisation)

- **Supragingival calculus**
 - Mostly harmless
 - Forms above the gingival margin (hence the clever name)
 - Mineral source: Saliva
 - ca. 37% mineral content

- **Subgingival calculus**
 - Associated with periodontitis
 - Forms below the gingival margin
 - Mineral source: Gingival crevice fluid
 - ca. 58% mineral content

Credit: Jess Beck
Inoculate with whole saliva
Sucrose
Sucrose + starch
CPMU
Full media replacement
α-amylase

- Saliva contains the enzyme α-amylase, which is involved in the initial digestion of starches.
- α-amylase breaks starches down to smaller sugars (hydrolysis).
- Certain oral bacteria (Streptococci) can bind α-amylase in order to obtain nutrients.